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This paper tests various propositions underlying claims that observed global temperature change is mostly attributable to
anthropogenic noncondensing greenhouse gases, and that although water vapour is recognized to be a dominant contributor
to the overall greenhouse gas (GHG) effect, that effect is merely a “feedback” from rising temperatures initially resulting only from
“non-condensing” GHGs and not at all from variations in preexisting naturally caused atmospheric water vapour (i.e., [H2O]).
However, this paper shows that “initial radiative forcing” is not exclusively attributable to forcings from noncondensing GHG, both
because atmospheric water vapour existed before there were any significant increases in GHG concentrations or temperatures and
also because there is no evidence that such increases have produced measurably higher [H2O]. The paper distinguishes between
forcing and feedback impacts of water vapour and contends that it is the primary forcing agent, at much more than 50% of the total
GHG gas effect. That means that controlling atmospheric carbon dioxide is unlikely to be an effective “control knob” as claimed
by Lacis et al. (2010).

1. Introduction:
Previous Econometric Modelling

The main technique used in this paper is econometric least
squares regression analysis, which enables computation of
the relative strength of proposed alternative and independent
causal factors in determination of the dependent variable,
temperature change. This procedure is not used in Solomon
et al. [1] or by Schmidt et al. [2] and Lacis et al. [3].
Instead, they all rely on computer models of the climate
system in which parameterized expressions for the main
variables under consideration are first used to generate a
simulation of the global climate, and when the average of
an ensemble of such models generates some conformity
with observations, the expressions for one or other of the
noncondensing and condensing GHGs are removed in turn
from their composite model, and thereby they estimate the
relative strength of individual GHGs. However, the claims
that only the noncondensing GHGs are the “forcing” agents,
and that condensable water vapour has just a feedback role,
are built into the models’ alternate simulations, and do not
constitute confirmatory evidence validating their hypothesis
that the only role of water vapour and clouds is to “amplify

the initial [sic] warming provided by the noncondensing
GHGs, and in the process, account for the bulk of the total
terrestrial greenhouse effect” [3–9]. For that, in the absence
of controlled physical experiments like those of Tyndall [10],
which are not possible at the global or regional levels with or
without computer models, econometrics is essential.

Dessler and Davis [11, page 1] state that the water vapour
feedback “is the process whereby an initial warming of the
planet, caused, for example, by an increase in long-lived
greenhouse gases, leads to an increase in the humidity of
the atmosphere. Because water vapour is itself a greenhouse
gas, this increase in humidity causes additional warming.
This is the most powerful feedback in the climate system,
with the capacity by itself to double [sic] the warming from
carbon dioxide alone.” That claimed positive feedback is
what explains how the IPCC’s predicted global temperature
increase for a doubling in [CO2] from the c.280 ppm in
1900 of 3◦C (central value) to 560 ppm implies an increase
of 2.3◦C from the extra 60 percent in [CO2] from 2010,
despite the observed only 0.83◦C associated with the nearly
40 percent increase in [CO2] between 1900 and 2010
(Gistemp). This paper’s regression analysis tests for the
relative importance of changes in [CO2] and [H2O] and also
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as to which comes first, the former according to Dessler and
Davis [11], or the latter, in “forcing” temperature changes.

Not many researchers have used time domain economet-
rics methods to analyze climate change. Stern and Kaufmann
[12, page 412], Tol and de Vos [13], and Tol [14], are
amongst the few that explicitly use econometric multi-variate
regression analysis of time series data to investigate the causes
of climate change. . .1

None of these papers addresses the respective propor-
tions of condensing and noncondensing GHGs to the overall
greenhouse effect, and none mention [H2O] as an indepen-
dent variable with potential explanatory value for changes
in temperature. Kaufmann et al. [15, 16] have made further
use of econometric methods, and comment how “statistical
models of the relationship between surface temperature and
radiative forcing that are estimated from the observational
temperature record often are viewed skeptically by climate
modelers. One reason is uncertainty about what statistical
models measure. Because statistical models do not represent
physical linkages directly, it is difficult to assess the time
scale associated with statistical estimates for the effect of
a doubling in CO2 on surface temperature.” These papers’
database regressions (Section 4) use a wide range of “physical
linkages,” and the derived coefficients provide an ample
resource for “assessing the time scale. . . for the effect of a
doubling in CO2,” which could be more than a hundred years
if their analysis is correct.2

Hegerl et al. [17], in AR4, [1] claimed that they would
attempt to differentiate between climate changes “that result
from anthropogenic and natural external forcings” (p.667).
However, they do not report any regression results estimating
the relative values of those forcings. They concede (p.668)
that attribution studies seek to “assess whether the response
to a key forcing, such as greenhouse gas increases, is
distinguishable from that due to other forcings (Appendix
9A) and add that “these questions are typically investigated
using a multiple regression of observations onto several
fingerprints [sic] representing climate responses to different
forcings. . . see Section 9.2.2.” However, there is no trace of the
results of any such analysis anywhere in Hegerl et al. 2007,
least of all in either their referenced Section 9.2.2 or their
Appendix 9A. The latter (pp.744-745) does have a textbook
account of multivariate regression but reports no results.
Thus Hegerl et al. [12, p.666] provide no evidence for their
assertion “greenhouse gas forcing has very likely caused most
of the global warming over the last 50 years” where “very
likely” means “more than 90 percent probability” [1, page
121], and “most” must mean at least more than 50 percent
when only two independent variables are considered.3 Had
these authors done some regression analysis, they could have
been more precise, but they never did, nor do they report any
by others.

Instead, for both Hegerl and Allen [18] and the many co-
authors of the 11 papers cited by Hegerl et al. [17] of which
Hegerl was the lead author, “attribution” consists of model
outputs with imposed parameters of radiative forcing arising
from [CO2] and other greenhouse gases.4 In practice, none of
these papers perform any regression analysis of both natural
and nonnatural forcings and ignore primarily “natural

external forcings” like that from [H2O]. Hegerl and Allen
[18] deal only with greenhouses gases and sulphur dioxide,
and the latter is even more of anthropogenic origin (mainly
comprising emissions from combustion of hydrocarbon
fuels) than the former. It is true that sulphate aerosols are
usually assumed to have a cooling effect, see Charlson and
Wigley [19], but most sulphate aerosols (hereafter [SO2])
are of the same anthropogenic origin in time and place as
emissions of CO2 although from time to major volcanic
eruptions increase both [CO2] and [SO2], with only local
effects in the case of the latter. The other papers cited
by Hegerl et al. [17] adopt much the same approach. For
example 7Hegerl et al. [20, page 632] consider only [CO2]
and [SO2] with just this mention of solar irradiation at the
top of the atmosphere (TOA): “We used only a greenhouse
gas and a greenhouse gas-plus-aerosol signal pattern, since
the solar response pattern could not be sufficiently separated
from noise and the greenhouse gas pattern,” a curious
conclusion in the light of the title of that paper.

Stott et al. [21, page 2]5 use what they call “optimal
detection technology” to conclude that “increases in tem-
perature observed in the latter half of the century have been
caused by increases in anthropogenic greenhouse gases offset
by cooling from tropospheric sulphate aerosols rather than
natural variability. . .” They claim that their “technology” is
simply “just least squares regression in which we estimate the
amplitude in observed data of prespecified [i.e., modelled]
patterns of climate change in space and time” [21, page 1],
yet at no point does their paper report adjusted R2 or any
other standard regression statistics (e.g., sum of squares, F,
coefficients, standard errors, t-statistics, or P-values arising
from their regressions). Nor does their paper report any of
the standard tests (Durbin-Watson, Dickey-Fuller) for serial
autocorrelation and thereby for spurious correlations, and
least of all, any of the normal tests for multicollinearity.
Moreover, these authors’ “control simulation, in which
external climate forcings. . .are kept constant to simulate [sic]
natural internal variability, has been run for over 1700 years
[sic] (our emphasis)” is contradictory.6

This paper uses overlooked NOAA-ESRL site-specific
databases of statistics on a wider range of both human and
natural climatic variables than is analyzed in any of the
“detection and attribution” papers noted above. We show
that a comprehensive analysis results in relegating [CO2] to
insignificance as a determinant of climate change, and that
atmospheric water vapour arising almost exclusively from
nonhuman sources is by far the largest source of radiative
forcing and temperature change. We thereby hope to achieve
a better response to the Kaufmann et al. [15, 16] challenge
noted above, however incompletely. Section 2 provides an
assessment of the appropriate specifications to be adopted for
multivariate regression analysis of various models’ climatic
variables, while Section 3 outlines the paper’s data sources.
Section 4 reports its regression results, and the concluding
Section 5 provides discussion of the implications of these
results.
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2. Methodology

Unlike mainstream climate science, which relies wholly on
“general circulation models” (GCM) [4, page 749], few of
which successfully hindcast the observational record without
retrospective fine tuning of parameters, we seek to evaluate
the following climate change models using only the obser-
vational record. That is represented by measures of monthly
or annual temperatures (T), such as minimum, maximum,
and mean, at various locations between 1960 and 2006,
as potentially mostly determined by one of the following,
including rising atmospheric concentration of greenhouse
gases in general, represented by x1, [CO2] (following [13,
page 96]), by variations in x2, solar surface radiation (SSR, in
Watt hours per square meter, Wh/m2), and x3, atmospheric
water vapour ([H2O], in cm.)

T = a + bx1 + cx2 + dx3 + ex. . .n + u[x]. (1)

Variable u[x] is an error or “noise” term that represents any
failure of the linear combination of x1, x2, and x3 to account
fully for T . However, because of substantial evidence of
spurious correlations when regressing T on the independent
variables in (1), we assess the similar hypothesis, that year on
year changes in temperature are determined by year on year
changes in those independent variables (see (4) below).

It is important to establish that the RHS variables in (1)
are indeed independent of each other, so I run regressions
of each of x1,...n on each other in turn; for example, if x1

represents atmospheric water vapour [H2O] and x2 is [CO2],
then we need to know if x1 is a function of T and x2:

x1 = a + f T + cx2 . . . .ex...n. (2)

Clearly, total independence of the T and [CO2] variables is
questionable, as on colder/hotter days offices and households
are likely to use more heating/cooling, and if that involves
burning of more hydrocarbon fuels, then large changes in
T from ambient levels will affect additions to [CO2]. I have
done tests (not reported here) which show that changes
in [CO2] appear to have no impact on changes in [H2O].
The outcomes of the regression analysis of (1) and (2)
are discussed below. Additional regression results may be
found in the Supplementary Material available on line at
doi: 10.1100/3012/761473. Although there has been general
agreement that the T and [H2O] variables are independent,
as “most of (the water vapour in the atmosphere) originates
through evaporation from the ocean surface and is not
influenced directly by human activity” ([22, page 23] see
also IPCC, TAR, [23]), the view in IPCC AR4 [1] is that
atmospheric water vapour is increasing because of the rises
in temperature attributed to increasing [CO2] (see below for
assessment of that claim).

There has been considerable debate since Granger and
Newbold [24] on how best to ensure that OLS regression of
the variables in (1) does not produce spurious correlations
between the temperature and the independent variables x1,
x2, and x3. Various tests have been devised to determine
whether the variables are “stationary” or have “unit roots.”
The presence of a unit root in a time series is considered

to invalidate standard regression analyses because that series
is no longer stationary, this being a necessary condition
to ensure avoidance of spurious correlation7. For example,
many time series in economics have a steady upward trend
similar to that of the concentration of carbon dioxide in
the atmosphere [CO2]—numbers of television sets, mobile
phones, computers, and their broadband connections all
show steady upward trends worldwide, but none of these
trends can plausibly imply either direct or inverse causal rela-
tionships with [CO2] despite no doubt striking correlation
coefficients between them and rising [CO2].

One widely applied solution to the problem of nonsta-
tionarity in time series is first to difference the series in
question, by subtracting the present value of a variable from
the previous value, and so on for all values in the series.8

A simple regression model is merely a straight line fitted to
a scatter-plot of one variable versus another. So when there
are debates as in Kaufmann and Stern [25] and Kaufmann
et al. [15, 16] as to whether various statistics, such as local
or global temperatures and other climate variables, have a
unit root and thereby require cointegration, or are trend
stationary, this means only that there is a problem in system
identification. That means we have to determine whether we
are looking at the output of a first order low pass filter (what
the statisticians call I(0) or at the output of an integrator—as
in I(1)). In the former, the variance is a constant (although
the distribution may be around a linear trend), in the latter
the variance is itself expanding (or inflating).

In this paper’s in situ (local) model and its data these
considerations are irrelevant. All that matters is that the
data on changes in [CO2] and [H2O] and any other
causative variables should be linearly independent. A key
requirement—spelt out in rule (5) in the list below—is that
this noise must have a constant variance over the distribution
of samples; it must be I(0). We need only to take first
differences if we have some reason to suppose that this noise
is I(1), and because we do find evidence of multicollinearity
when regressing the absolute values of the independent
and dependent variables of interest, we focus here mostly
on the results of regressions taking the first differences of
both the dependent and the independent variables. However,
“stationarizing” in this manner is not necessarily one of the
general rules for successful application of regression analysis
(and calculation of meaningful statistics subsequently).

In general, the various rules or conditions that must be
satisfied for a valid regression are the following:

(1) the predictor samples xt1,2...n and yt must be repre-
sentative of the population that they are sampling;

(2) the unknown ut must have zero mean;

(3) the predictors must be linearly independent;

(4) the unknown ut must be uncorrelated;

(5) the unknown ut must be samples from a ran-
dom variable population with constant variance, or
homoscedastic.

Evidently, there is no particular requirement that the vectors
x and y of the respective data should conform to a time series
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with specific statistical properties. The noise variables ut in
(1) appear to be I(0), with uncorrelated zero mean and with
no expansion of the variance, at least there is no evidence that
they are not.

The aim is to establish if the level of [CO2] is or is
not—the main explanatory variable of average global or
local temperature—in some quasimonotonic relation. For
simplicity we stick to basic linear regression.

The Mauna Loa Slope Observatory in Hawaii has
provided a test range of CO2 from 315.71 ppm in April
1958 to 393.39 ppm in April 2011 and such current levels
are confirmed by other measurements that started some
years later, like those at Pt. Barrow in Alaska and elsewhere,
including Cape Grim in Tasmania9. We may call this the
independent “x1” variable. Let y represent the averaged
annual temperature at either the global or some specific
location. Is there a dependence y � f (x)—or linearized
about some operating point, does y � a + bx?10 Perhaps
so, but it makes no difference whatsoever in the testing
whether x itself should exhibit a consistent rising trend
(what engineers call a “ramp”) or whether it is noise-like.
The condition to satisfy rule (1), that x should cover with
reasonable uniformity the given range, is clearly satisfied.
Where this paper seeks to make a useful advance is in
proposing a multiple regression to include all the potential
causes of “weather.”

One obvious candidate for determining mean maximum
(i.e., day) temperature in addition to [CO2] has to be
localized solar surface radiation SSR in Watt hours/sq. meter
which I call here x2. If the sun shines on any given day of
successive years more or less “vertically” (or with less albedo)
at any one place, subject to the level of atmospheric water
vapour at the same place, then the temperature is likely
to vary with the respective variations in solar radiation at
that place. Similarly, the level of [H2O] at any given time
and place, closely related to the relative humidity (RH) that
is well known to make any given temperature level seem
“hotter” than otherwise, has a no more evident relationship
with [CO2] than the level of solar surface radiation. That
is because [CO2] is invariant across the globe, at all given
times and places, while [H2O] varies enormously at any given
latitudes and times.

Again for simplicity let us introduce this one fur-
ther possible explanation as z � f (x1, x2) or linearized
z � a + bx1 + cx2. Rule (3) says that formally there
should be no linear dependence of x1 and x2, as that could
produce multicollinearity and spurious correlations with
temperatures y. There seems little risk of that with these
variables. There is no reason why atmospheric water vapour
and total watt hours of sun at any one location during any
year would be coupled and connected to the level of [CO2]
at that location in that year. Whether time series x1, x2 . . . .xn
and time series y exhibit nonstationarity or not is irrelevant
and incidental when they are independent of each other,
but, to be on the safe side, we provide standard tests for the
presence or not of multicollinearity and show that there is no
such presence in any of the regressions of our first differenced
data.

What a first differencing exercise may usefully show is a
better exhibition of a rising trend in temperature since the
“noise” in the measurements hopefully has been reduced
by introducing the additional independent variables using
x2 . . . xn. Thus our multiple regression analysis seeks to
remove or at least mitigate the scatter in annual temperature
by testing if and when that scatter is linked to changes in
solar surface radiation and other climatic variables such as
[H2O], in the hope of revealing a better measurement of
a linear trend in temperature (which would be otherwise
nondiscernible for the data assembly in our selected sites).

Again, what really matters is the statistical property
of the error sequence ut. We assume that this is an I(1)
sequence, because there is evidence for autocorrelation and
multicollinearity of the absolute data, and that is why we rely
on first differenced data. In general we find that [CO2] plays
at best a marginal role—and one that is usually statistically
insignificant—in explaining the temperature changes at var-
ious locations in USA over the 47 years inclusive between
1960 and 2006 (when the NOAA discontinued reporting the
data sets used here, although a similar but less comprehensive
series with data from 1948 to 2011 for locations defined by
their latitude and longitude is available from ESRL-NASA).11

3. Data Sources

The “BEST” data sets [26] are the latest attempts to “homog-
enize” the most widely used global temperature sets, namely,
Gistemp, HadleyCRU, and NCDC, but exclude the ESRL-
NOAA data that have attempted the same task since 1996
[27]. In Section 4 below I use the BEST data set for global
assessment since 1990, and in Supplementary Material, the
NASA-GISS Gistemp series since 1958. For in situ (local)
analysis I use the ESRL-NOAA database which covers some
1,200 locations across the whole of the USA since 1990, and
of these more than 200 have data extending back to 1960.
However I report detailed results of such analysis for just
Point Barrow in Arctic Alaska and Hilo in equatorial Hawaii
(at the foot of Hawaii’s Mauna Loa) and at Mauna Loa
itself, where Keeling set up his [CO2] observatory in 1958.
In Supplementary Material I also report regressions of data
from various other locations.

Table 7 presents a specimen of the NOAA-ESRL raw data
from Point Barrow, in the arctic circle at the northernmost
tip of Alaska, where if [CO2] is to be significant anywhere, it
has to be there, given mean temperatures that have always
been negative since 1960, despite [CO2] levels there that
are almost identical to those at Mauna Loa in Hawaii and
elsewhere on the globe.12 Not only that, Barrow being in the
Arctic Circle is a pristine site, far removed from confusing
elements such as the urban heat island (UHI) effect, which
is why it was selected as one of the gold standard locations
for measurement of [CO2]. That is also why Keeling selected
Mauna Loa for his first [CO2] measurement station, as it
too is far aways from other anthropogenic influences, at an
altitude of 3,500 meters above sea level.
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4. Regression Results

4.1. Is Most of Observed Temperature Change due to Anthro-
pogenic GHGs? I first regress the global mean temperature
(GMT) anomalies against the global annual values of the
main climate variable evaluated by the IPCC Hegerl et al.
[17] and Forster et al. [28] based on Myhre et al. [29],
namely, the total radiative forcing of all the noncondensing
greenhouse gases [RF]

Annual (Tmean) = a + b[RF] + u(x) . . . . (3)

The results appear to confirm the findings of Hegerl et al.
[17] with a fairly high R2 and an excellent t-statistic (>2.0)
and P-value (<0.01) but do not pass the Durbin-Watson test
(>2.0) for spurious correlation (i.e., serial autocorrelation),
see Table 1. This result validates the null hypothesis of
no statistically significant influence of radiative forcing by
noncondensing GHGs on global mean temperatures.13

Modifying (3) to represent first differences in both the
dependent and independent variable,

ΔAnnual (Tmean) = a + b(Δ[RF]) + u(x) . . . . (4)

regression of year-on-year changes in GMT against those in
[RF] passes the Durbin-Watson test statistic, but the adjusted
R2 statistic is now far below 0.5, so does not confirm the
Hegerl et al. assertion (in Solomon et al. [1]) that “most”
(at least more than 50 percent) of changes in GMT result
from changes in [GHG] attributable to human causation
(see Table 2 and Figure 1). The failure of the regression to
reveal any contribution of changes in [GHG] to changes in
Gistemp’s GMT anomalies is obvious both from Figure 1
and from Table 2, which shows total statistical insignificance
because with t < 2.0, and P > 0.05, the critical values
are not attained. These results validate the null hypothesis
from Hegerl et al. [17] that there is no discernible and sta-
tistically significant causation of global temperature change
attributable to the radiative forcing from anthropogenic
changes in noncondensing GHGs.

The minimal level of R2 indicates serious omitted
variable bias, and this could be addressed by using the
ESRL-NOAA data for precipitable water [H2O], with results
shown in Table 3. Unfortunately, unlike the NOAA data
sets for hundreds of locations in USA from 1960 to 2006,
the ESRL-NOAA global reanalysis data sets exclude critical
variables like solar surface radiation, and that explains why
the minimal R2 in Table 3 again indicates the absence of
such variables and plausibly explains why the radiative
forcing from [CO2] and [H2O] has such minimal statistical
significance and can in no sense be described as “control
knobs.”

Next, I use first differences regressions to include NOAA
data on nonanthropogenic variables at various locations of
atmospheric water vapor [H2O], and solar surface radiation
in addition to [CO2] as the main atmospheric GHG14

Annual(Tmaxt1−t0,Tmint1−t0, AvDTt1−t0)

= a + b([CO2]t1−t0) + c(AVGLOt1−t0)

+ d(H2Ot1−t0) . . . .

(5)

Table 1: Regression of Gistemp anomalies on total noncondensing
GHG-radiative forcings.

(a)

Regression statistics

Multiple R 0.814

R square 0.662

Adjusted R Square 0.651

Standard error 12.384

Observations 31

Durbin Watson 1.749

(b) ANOVA

Df SS MS F

Regression 1 8718.49 8718.49 56.85

Residual 29 4447.51 153.36

Total 30 13166

(c)

Coefficients Standard error t stat P value

Intercept −80.581 16.278 −4.950 0.000

Total radiative
Forcings

53.584 7.107 7.540 0.000

Table 2: First-differenced regression of Gistemp temperature
anomalies on total noncondensing GHG-radiative forcing.

(a)

Regression statistics

Multiple R 0.183

R square 0.033

Adjusted R square −0.001

Standard error 16.467

Observations 30

Durbin Watson 2.760

(b) ANOVA

df SS MS F

Regression 1 262.454 262.454 0.968

Residual 28 7592.513 271.161

Total 29 7854.967

(c)

Coefficients Standard error t stat P value

Intercept −10.073 12.601 −0.799 0.431

dTotalRF 339.775 345.366 0.984 0.334

I first run this model for mean minimum temperatures
at Point Barrow in Alaska from 1960 to 2006 with results
reported in Table 4. This model passes the autocorrelation
(D-W > 2.0) and collinearity tests. The nonanthropogenic
[H2O] variable is highly statistically significant in regard to
what are night temperatures, at the better than 99 percent
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Figure 1: Plot of first differences in temperature anomalies and
total radiative forcing (by all noncondensing GHGs). Source: Muller
et al. [26].

Table 3: Regression of temperature change against radiative forcing
of [CO2] and year-on-year changes in [H2O].

(a)

Regression statistics

Multiple R 0.088

R square 0.008

Adjusted R square −0.034

Standard error 0.169

Observations 51

(b) ANOVA

df SS MS F

Regression 2 0.011 0.005 0.188

Residual 48 1.372 0.029

Total 50 1.383

(c)

Coefficients Standard error t stat P value

Intercept −0.030 0.084 −0.360 0.721

RF CO2 0.038 0.071 0.544 0.589

Δ[H2O] 0.017 0.072 0.230 0.819

Sources: ESRL-NOAA and CDIAC.

level, while the coefficient on the differenced [CO2] variable
is barely positive and remains statistically insignificant.

The adjusted R2 in Table 4 is somewhat lower at 0.41
than the 0.63 in Table 2, so clearly there is still at least
one omitted explanatory variable. As there is virtually no
sunshine at Barrow for most of the winter, solar surface
radiation is not a serious candidate, but obvious candi-
dates include temperature variation arising from the ocean
currents offshore of Pt Barrow, Arctic Ocean heat content,
and decadal wind variability (see [30–33]). These variables
are beyond the scope of this paper. However, if we now
consider mean maximum temperatures at Barrow, then net

Table 4: Determinants of temperature change at Pt. Barrow. Mean
minimum temperature 1960–2006.

(a)

Regression statistics

Multiple R 0.660

R square 0.435

Adjusted R square 0.409

Standard error 1.227

Observations 46

(b) ANOVA

df SS MS F

Regression 2 49.913 24.956 16.566

Residual 43 64.779 1.506

Total 45 114.692

(c)

Coefficients Standard error t stat P value

Intercept 0.001 0.473 0.002 0.998

Δ [H2O] 17.225 3.076 5.600 0.000

Δ [CO2] 0.007 0.311 0.021 0.983

Sources: http://rredc.nrel.gov/solar/old data/nsrdb/1961-1990/dsf/ and
http://rredc.nrel.gov/solar/old data/nsrdb/1991-2005/ For CO2: http://
www.esrl.noaa.gov/gmd/ccgg/trends/.

solar surface radiation (“AVGLO”) and opacity of the sky
(“OPQ”) (using their absolute values) can be added to the
regression, with results shown in Supplementary Material.
There the unadjusted R2 is 0.39, and only the [H2O] variable
is statistically significant, accounting for more than 90 per
cent of the changes in mean maximum temperature over
the period 1960–2006, thereby going beyond the assertion by
Schmidt et al. 2010 cited above that atmospheric water vapor
accounts for only 50 per cent of the total greenhouse effect
[2].

The conclusion from the limited model used in Tables
4 and 5 is that there can be a high degree of confidence
that the increasing radiative forcing due to rising [CO2] at
Pt Barrow attributable to anthropogenic emissions plays no
role in explaining the climate there since 1960. We are also
able to show that which proves to be the case for all the other
locations where the same regression analysis is possible (see
examples in the Supplementary Material).

I now provide here one further site-specific regression
analysis, for the Slope Laboratory at Mauna Loa itself
(Table 6), close to the Equator while Barrow is in the
Arctic Circle. The Durbin-Watson and collinearity tests are
satisfactory, and the R2 (0.399) along with the t statistics
and P values for the coefficient on Δ[CO2] do not imply
that changes in [CO2] at the foot of Mauna Loa have had
“most” (Hegerl et al. [17]) to do with temperature changes
there since 1960. Instead, the coefficients on the variables in
Table 6 indicate that [H2O] accounts for more than 90 per
cent of temperature change near where C. D. Keeling began
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Table 5: Determinants of temperature change at Pt. Barrow.
Determinants of year-on-year differences in mean maximum annual
temperatures point Barrow 1960–2006.

(a) Summary output. Dependent variable: year-on-year changes in mean
maximum temperatures

Regression statistics

Multiple R 0.593

R square 0.351

Adjusted R square 0.321

Standard error 1.314

Observations 46

(b) ANOVA

df SS MS F

Regression 2 40.162 20.081 11.633

Residual 43 74.228 1.726

Total 45 114.390

(c)

Coefficients Standard error t stat P value

Intercept −0.075 0.743 −0.101 0.920

ΔH2O 15.456 3.207 4.820 0.000

RF abs 0.065 0.648 0.100 0.921

Sources: http://rredc.nrel.gov/solar/old data/nsrdb/1961-1990/dsf/ and
http://rredc.nrel.gov/solar/old data/nsrdb/1991-2005/ For CO2: http://
www.esrl.noaa.gov/gmd/ccgg/trends/.

his measurements of the atmospheric concentration of CO2

back in 1958.15

I noted above that water vapor is the most potent green-
house gas because it absorbs strongly in the infra-red region
of the light spectrum, first demonstrated by Tyndall [10],
despite the conventional view [2] that because the water
vapor content of the atmosphere will increase in response
to warmer temperatures, water vapor is only a feedback
that merely amplifies the climate warming effect due to
increased carbon dioxide alone. In reality, the [H2O] variable
in the NOAA’s database proves to be a remarkably powerful
determinant of climate variability over the period from 1960
to 2006 not only at Barrow but across all USA, as it is
always highly statistically significant at better than the 95%
level of confidence for both annual mean minimum and
maximum annual temperatures. This is hardly surprising,
if only because in reality, as Tans has noted16, “global
annual evaporation equals ∼500,000 billion metric tons.
Compare that to fossil CO2 emissions of ∼8.5 billion ton
C/year,” and even the total level of [CO2] is only 827 billion
tonnes of carbon equivalent. It would seem to be a case
of the tail wagging the dog if the additions to [CO2] from
human burning of hydrocarbon fuels have raised global
temperatures enough (just 0.0125◦C p.a. since 1950) to
generate annual evaporation of 500,000 billion tonnes of
[H2O], especially when as I have shown here, its role in

Table 6: Regression analysis of changes in annual mean temperature
at Mauna Loa Slope Observatory with respect to changes in the
annual level of [CO2] and [H2O] 1977–2009.

(a) Summary output. Dependent variable: year on year changes in mean
maximum temperatures

Regression Statistics

Multiple R 0.631

R square 0.399

Adjusted R square 0.356

Standard error 0.565

Observations 46

(b) ANOVA

df SS MS F

Regression 3 8.876 2.959 9.281

Residual 42 13.389 0.319

Total 45 22.265

(c)

Coefficients Standard error t stat P value

Intercept −0.248 0.219 −1.133 0.264

Δ[CO2] 0.195 0.145 1.346 0.186

Δ[H2O] 2.564 0.548 4.676 0.000

ΔAVGLO 0.001 0.000 3.721 0.001

Durbin-Watson:
2.834

explaining temperature changes is much less than claimed by
the IPCC’s Hegerl et al. [17] (see also [5]) (Figure 2).

5. Conclusion

This paper has used basic econometric (multivariate least
squares regression) analysis of observational evidence to
falsify or confirm two null hypotheses, first that “most”
of observed global warming since around 1950 has not
been “very likely” caused by emissions of noncondensing
anthropogenic GHGs [17], and, second, that the noncon-
densing GHGs do not constitute a “control knob” enabling
manipulation of global climate. The regression results in
the previous Section confirm the first null, as there is no
statistically significant evidence to show that increases in
anthropogenic GHGs account for any, let alone “most,” of
observed global temperature change.

The second null derives from this statement by Lacis
et al. [3].

This assessment comes about as the result of climate
modeling experiments which show that it is the non-
condensing greenhouse gases such as carbon dioxide,
methane, ozone, nitrous oxide, and chlorofluoro-
carbons that provide the necessary atmospheric
temperature structure that ultimately determines the
sustainable range for atmospheric water vapor and
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Figure 2: Trends in annual changes in annual mean temperatures
and average annual [CO2] Mauna Loa Slope Observatory 1977–
2009. Notes: neither of the trends has good linear fits, with R2 < 0.1,
and there is in fact no discernible trend in changes in the annual
mean temperature at Mauna Loa. Temperature data at Mauna Loa
are not included in any of the Hadley-CRU, GCHN, and Gistemp
data sets.

cloud amounts and thus controls their radiative con-
tribution to the terrestrial greenhouse effect. From
this it follows that these noncondensing greenhouse
gases provide the temperature environment that is
necessary for water vapor and cloud feedback effects
to operate, without which the water vapor dominated
greenhouse effect would inevitably collapse and
plunge the global climate into an icebound Earth
state.

Schmidt et al. [2] make a similar claim: “a model sim-
ulation performed with zero CO2 gives a global mean
temperature changes of about −35◦C and produces an ice-
covered planet (A. Lacis, pers. communication).” These
paper’s regressions do not invalidate the null that none of the
Schmidt-Lacis effects is evident when econometric analysis
is applied to observations of the most relevant climate
variables and instead indicate that the planet’s slow warming
is mainly associated with the much larger primary rather
than feedback changes in atmospheric water vapor, which
along with rising [CO2] have major social benefits in terms
of supporting the rising food production needed to feed a
global population now at 7 billion and projected to reach
9 billion by 2050 [6–9]. This may imply the demonization
of atmospheric CO2 by Hegerl et al. [17] and Schmidt et al.
[2], as the alleged primary source of rising temperature could
be because of the obvious political difficulty in countries like
Australia of blaming increasing rainfall for the observed slow
increases in global temperatures evident since 1950.

The basic physical science underlying the results above
is very straight forward, despite the misleading claims

in Solomon et al. [1] and Trenberth and Fasullo [34].17

These and others distinguish between so-called “long-lived”
noncondensing GHGs and the certainly short-lived nature
of [H2O] arising from evaporation created by solar energy,
since it is true that condensation and precipitation generally
follow evaporation within at most around ten days. But
that does not eliminate nonanthropogenic evaporation, for
as Lim and Roderick show [35, page 14], the average daily
level of basic [H2O] is around 3-4 litres per square meter
throughout the year18. That is a result of the solar radiative
forcing of 342 W/sq. meter [1, page 96]. meter. In contrast
the total radiative forcing attributable to noncondensing
anthropogenic GHGs is only c. 2.6 W/sq. meter [28]. The
annual increase in GMT attributable to up to that level
of forcing since 1950 has been only 0.0125◦C p.a. But the
Clausius-Clapeyron relation which defines the maximum
partial pressure of water vapour that can be present in
a volume of atmosphere in thermodynamic equilibrium
implies that would have only trivial effect on [H2O]. The
maximum is known as the saturation vapour pressure, es:19

es(T) = 6.1094 exp
(

17.625T
T + 243.04

)
. (6)

This formula suggests that the increase in [H2O] attributable
to rising GMT of 0.0125◦C p.a. that could be accommodated
in the atmosphere is only 0.047 per cent p.a., not enough
to have any measurable effect on GMT, far less than the
2◦C to even 3◦C and more claimed by Solomon et al. 2007
or Schmidt et al. 2010 for a doubling of [CO2] from the
preindustrial level of 280 ppm.

The data underlying my regressions showing that in
general variations in [H2O] account for as much as 90
per cent of observed changes in temperature both globally
and in situ suggest that such variations are far larger than
those indicated here by Clausius Clapeyron. Thus both my
regressions and Clausius Clapeyron fail to invalidate the
nulls of the hypotheses advanced by Hegerl et al. [17], Lacis
et al. [3], and Schmidt et al. [2]. Consequently it is far
from certain that managing the level of atmospheric carbon
dioxide concentration really is a meaningful “control knob.”

Appendix

AVGLO. A joule is the unit of energy. The Watt is the unit
of power and equal to a joule per second, or, equivalently,
a joule of energy equals a wattsecond, and a watthour,
Wh, equals 3.6 kilojoules of energy. The daily average
solar radiation at Barrow in June 1991 (per square meter),
3918 Wh, was 14.1 MJ (mega or million joules)—which lies
in the range noted here. The IPCC’s [1, page 141] radiative
forcing power of 2.6 W (per square meter) is equivalent to
0.225 MJ daily of additional energy in the climate system (per
square meter). Thus, we might conclude that, according to
the IPCC, atmospheric CO2 accumulated since preindustrial
times exerts 1.6% of the power of the sun on a summer’s
day in Barrow. More precisely, AVGLO is the average daily
total radiation for the “Global” horizontal component of
solar radiation (Wh/m2). “Global” solar exposure is the total
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Table 7: Specimen of NOAA Data Base. Point Barrow 1960–2006 (selected solar and atmospheric variables, data on average windspeed and
relative humidity, and so forth are also available). 700260 BARROW W POST-W ROGERS AK -9 N71 19 W156 37 10 1012.

1960 AVGLO AVDIR AVDIF AVETR AETRN TOT OPQ H2O TAU MAX T MIN T AVG T

January 1 28 1 9 399 4.7 3.4 0.31 0.07 −21.89 −28.5 −25.2

February 259 879 174 692 8541 5.1 3.9 0.29 0.08 −24.36 −30.95 −27.66

March 1568 3422 767 2980 15482 4.5 3.1 0.27 0.09 −22.79 −29.52 −26.17

April 3672 5181 1819 6387 21863 5.1 3.8 0.32 0.11 −15.19 −22.82 −19.01

May 4661 2925 3367 9870 29980 8.1 7.4 0.58 0.12 −4.33 −9.8 −7.05

June 4898 3687 3131 11824 31777 7.9 7.1 1.02 0.14 3.49 −1.26 1.13

July 4456 3878 2627 10926 31671 7.7 6.8 1.38 0.14 7.24 0.89 4.08

August 2624 1576 1962 7760 24588 8.9 8.3 1.26 0.13 5.75 0.75 3.26

September 1338 715 1125 4262 17865 9.2 8.7 0.81 0.11 1.01 −2.76 −0.86

October 478 451 413 1450 11513 8.5 7.7 0.46 0.09 −7.74 −12.89 −10.3

November 25 92 21 110 2665 7 6.1 0.32 0.08 −15.85 −21.59 −18.72

December 0 0 0 0 0 0 0 0.29 0 −20.68 −27.31 −24.01

Source: http://rredc.nrel.gov/solar/old data/nsrdb/1961-1990/dsf/ and http://rredc.nrel.gov/solar/old data/nsrdb/. AVGLO/DIR/DIF: Average daily total solar
radiation for the GLObal horizontal, DlRect normal, and DlFfuse horizontal elements (Wh/m2). SDGLO/DIR/DIF: Standard deviation of daily total global,
direct, and diffuse solar radiation (see note (2) below) (Wh/m2). AVETR & AETRN: Average dally total global horizontal (AVETR) and direct normal (AETRN)
extraterrestrial solar radiation (Wh/m2). TOT, OPQ, H2O, TAU: Average TOTal and OPaQue sky cover (tenths), precipitable water (cm), and aerosol optical
depth (unitless). MAX T, MIN T, AVG T: Average maximum, minimum, and 24-hour temperatures (◦C).

amount of solar energy falling on a horizontal surface. The
daily global solar exposure is the total solar energy for a day.
Typical values for daily global solar exposure range from 1
to 35 MJ/m2 (megajoules per square meter). The values are
usually highest in clear sun conditions during the summer,
and lowest during winter or very cloudy days. . . Irradiance
is a measure of the rate of energy received per unit area and
has units of Watts per square meter (W/m2), where 1 Watt
(W) is equal to 1 Joule (J) per second. Radiant exposure is a
time integral (or sum) of irradiance. Thus a 1 minute radiant
exposure is a measure of the energy received per square
meter over a period of 1 minute. Therefore, a 1-minute
radiant exposure equals mean irradiance (W/m2) × 60(s)
and has units of joule(s) per square meter (J/m2)” (see Solar
Radiation Definitions, Australian Bureau of Meteorology,
2009). The NOAA/NREL data are hourly averages in Wh/m2,
so “AVGLO” of 3918 Wh/m2 at Point Barrow in June 1991 is
equivalent to 94,032 W/m2 per day or 65 W/m2 per minute.
Thus at Barrow the SSR for the year 1960 amounted to a
daily average of 2006 Wh/m2, or 17,572,560 Watts/m2 over
the year. The AVGLO data in Table 7 are net of outgoing
albedo (reflection of sunlight), and the NOAA’s database
therefore also includes the gross “Direct” and “Diffuse”
components of incoming solar radiation. The source data
includes standard deviations for these variables. Note that
the IPCC uses W/m2 (not Wh/m2) for its measures of the
(net) addition to solar radiation by “radiative forcing” of
greenhouse gases, estimated at 2.6 W/m2 (per minute), that
is, 156 Wh/m2, in 2005 [1, page 141]. That may be compared
but never be in Solomon et al. 2007, with the AVGLO (total
net solar radiation) of 3918 Wh/m2 at Barrow in June 1991.
However, the former is the IPCC’s radiative forcing, a change
in the balance of the energy fluxes at top of the atmosphere
measured in watts per square meter. The latter is the total

energy incident on an average day in say June 1991 on a
square meter of Barrow measured in watt hours per square
meter, but modified by [H2O] and other factors like aerosols
and albedo. The IPCC’s radiative forcing is gross, that is,
without taking into account any of the other factors affecting
the level of solar radiation actually reaching the surface at Pt
Barrow or anywhere else.

H2O. It is Precipitable water vapour (cm.) The total atmo-
spheric water vapour contained in a vertical column of unit
cross-sectional area is extending between any two specified
levels, commonly expressed in terms of the height (cm.
in Table 7) to which that water substance would stand if
completely condensed and collected in a vessel of the same
unit cross-section. See also Solomon et al. [1, pages 271–
273], where it is stated “global, local, and regional studies
all indicate increases in moisture in the atmosphere near the
surface.”

TOT and OPQ. Opaque sky cover is the amount of sky
completely hidden by clouds or obscuring phenomena, while
total sky cover includes this plus the amount of sky covered
but not concealed (transparent). Sky cover, for any level aloft,
is described as thin if the ratio of transparent to total sky
cover at and below that level is one-half or more. Sky cover
is reported in tenths, so that 0.0 indicates a clear sky and 1.0
(or 10/10) indicates a completely covered sky (excerpt from
Meteorological Glossary, AMA, accessed 29 September 2010).
En passant, we note that the presence of more molecules
of CO2 in the atmosphere could be expected to decrease
TOT and OPQ, and this could help to explain why rising
[CO2] in the local data sets examined here tends to have a
negative, rather than positive, impact on local temperatures
(see Supplementary Material).
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Tau—Aerosol Optical Depth (AOD or, in NOAA Data Sets,
“Tau”). Aerosol optical depth is a quantitative measure of
the extinction of solar radiation by aerosol scattering and
absorption between the point of observation and the top of
the atmosphere. It is a measure of the integrated columnar
aerosol load and the single most important parameter
for evaluating direct radiative forcing. The optical depth
expresses the quantity of light removed from a beam by
scattering or absorption during its path through a medium.
If I0 is the intensity of radiation at the source and I is the
observed intensity after a given path, then optical depth τ is
defined by the following equation:

I

I0
= e−τ . (A.1)

(From Wikipedia articles “Aerosol Optical Depth” and
“Optical Depth,” accessed 28 September 2010.)
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Endnotes

1. Tol and Vellinga [36] used econometric analysis to sep-
arate the enhanced greenhouse effect from the influence
of the sun at the top of the atmosphere (TOA), while
Tol and de Vos [13] used Bayesian analysis. Neither
paper considers the role of atmospheric water vapour.
Most common is the fingerprint method (e.g. Hegerl
and Allen [18]) which claims to produce a human signal
by using Global Circulation Models (GCM). But “the
fingerprint approach is only applicable for detection of
(dis)similarities between patterns; it seems impossible to
use it to derive a probability distribution of the climate
sensitivity. We use time series analysis. We do not rely
on GCM results—at the expense of using an (overly)
simple representation of the climate—and show that
this allows to estimate a probability distribution of the
climate sensitivity” [13, pages 88-89].

2. The textbook by von Storch and Zwiers Statistical
Analysis in Climate Research [37] offers an advanced
treatment but apart from using climate data for illus-
trative examples does not itself undertake systematic
analysis using its own methods. Those methods are also
absent from [17].

3. If only two independent variables are specified, “most”
must mean more than 50%; if there are three or more,
then “most” means that the preferred variable, in this
case [CO2], must have greater potency than the sum
of the others; for example, 40% is not sufficient if the
others sum to 60%. If the criterion for “most” is only
that [CO2] be the single most potent (and significant)
of all the variables, that could be only 1% if all the

others individually each contribute less than 1% but
jointly account for 99%. In that case the claims by the
IPCC’s Solomon et al. that increases in [CO2] account
for “most” observed global warming are consistent with
all states of the world.

4. The basic formula for the radiative forcing attributed to
rising [CO2] is RF = 5.35(LN(CO2t/280)), where 280 is
the preindustrial level of [CO2] in ppm., and CO2t is the
level in the year in question [29].

5. Stott has 11 citations as a lead author in Hegerl et al.
[17].

6. Muller et al. [38] provide data showing very large
declines in SO2 emissions of the US electric power sector
between 1990 and 2008. While coal-fired power’s CO2

emissions increased by nearly 200 billion tons over that
period, SO2 emissions by the coal-fired power industry
fell from 14.28 million tonnes to 5.5 million tonnes, and
similarly for NOx (7.1 million tonnes to 2.4). These falls
should have enhanced the radiative forcing from rising
levels of atmospheric CO2, but there is no evidence to
support that. Kaufmann et al. [39] attribute the “hiatus”
in global warming since 2000 to SO2 emissions in China,
but their estimate of such global emissions at 65 million
tonnes p.a. seems trivial relative to annual emissions of
over 30 GtCO2.

7. “In the mathematical sciences, a stationary process is a
stochastic process whose joint probability distribution
does not change when shifted in time or space. As a
result, parameters such as the mean and variance, if
they exist, also do not change over time or position.”
(Wikipedia, October 2010).

8. A stationary series ab initio is denoted I(0), the first
differenced as I(1), and the second as I(2).

9. The US data are available from http://www.esrl.noaa.
gov/gmd/ccgg/iadv/.

10. In the Supplementary Material, I report basic regres-
sions of Gistemp’s “global temperatures” as a function
of the radiative forcing of the level of [CO2].

11. Graphing highly autocorrelated time series data show-
ing rising CO2 concentrations and rising temperatures is
not enough to “prove” that the data support the theory
that the former is responsible for the latter.

12. Point Barrow is also an ideal test of Arrhenius’ model
[40], since he himself claimed that the temperature
effects of doubled [CO2] would be significantly higher
(6.05◦C) at Barrow’s latitude (71◦N) than at the equator
(4.95◦C) [40, Table VII] for a doubling of [CO2], and
3.52◦C for just a 50 percent increase in [CO2], compared
with 3.15◦C at the equator [40, Table VII]. Arrhenius’
prediction of a 3.52◦C rise in temperature at Point
Barrow given a 50 percent increase in [CO2] implies
that its mean annual temperature would have warmed
by more than 3.52◦C from the actual minus 12.54◦C
in 1960 to around minus 9.02◦C in 2006, whereas the
actual so far is minus 10.2◦C, a warming of only 2.52◦C.
At Hilo near the equator, the predicted “warming” from
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1960 to 2006 actually turned out to be a cooling of
0.12◦C for the same near 40 percent increase in [CO2],
but consistent with Arrhenius’ prediction that warming
would be greater at higher latitudes than lower.

13. If the Durbin-Watson statistic is substantially less than
2, there is an evidence of positive serial correlation,
“Durbin-Watson statistic,” Wikipedia, accessed 26th
October 2010.

14. Kaufmann et al. [15, page 257] also adopt first differ-
encing: “To avoid statistical problems associated with
the lack of cointegration, we take the first difference of
equation (7)

Δxt = ρΔxt − 1 + Δεt + θΔtempt + vt. (A.2)

Specifying the concentration equation in first differ-
ences eliminates all stochastic trends and therefore
allows us to avoid the effects of carbon uptake by the
unknown carbon sink(s) and measurement error on
statistical estimates for the effect of temperature on
concentrations.”

15. See also Curry at al. [30] and Liu et al. [31].

16. Pers. Comm. See also Tans [41]. For more detailed
estimates of global evaporation rates, see Lim and
Roderick [35].

17. Trenberth [42] states “Water has a short lifetime in the
atmosphere of 9 days on average before it is rained
out. Carbon dioxide on the other hand, has a long
lifetime, over a century, and therefore plays the most
important role in climate change while water vapor
provides a positive feedback or amplifying effect; the
warmer it gets, the more water vapor the atmosphere
can hold by about 4% per degree Fahrenheit”. This
claim that atmospheric (CO2) has a long lifetime, over
a century...,” is at variance with Houghton et al. [24]
and Houghton [23], which indicate only about 5 years,
because around 20 per cent of atmospheric CO2 is
continuously recycled between the earth’s surface and
the atmosphere. Moreover, if atmospheric water vapor
arising from solar-based evaporation is “rained out”
within 9 days, as claimed by Trenberth and Fasullo [34]
that must also be true of [H2O] attributable to rising
temperature via the Clausius-Clapeyron relation (see
below).

18. One millimetre of measured precipitation is the equiv-
alent of one litre of rainfall per metre squared. The
estimates in Lim and Roderick [35] of average global
evaporation/precipitation of up to 1,187 mm. p.a. in
1970–1999 imply evaporation/precipitation of c.4 mm.
per day. Thus, the average daily evaporation implies
average [H2O] of c. 4 litres per day per metre squared.
See also Kelly [43].

19. Wikipedia, “Clausius-Clapeyron”, accessed 30 October
2011, and Pierrehumbert et al. [44, page 145].
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